C: Seed Funding Project 4

Ferrocene Modification as Linkers

  • Project leader(s)
Dr. Mark Ringenberg
Dr. Mark Ringenberg
University of Stuttgart
  • Summary

The click-groups are often remote to the metal catalyst by design to prevent negative interactions. This design means the catalyst is, in theory, unaffected by the click reaction, i.e. the catalyst reactivity is the same whether the click-reaction has occurred or not. We propose that by incorporating the clickable moiety directly ligated to a metal center, which allows one to change the properties of the metal catalyst only after the click reaction has occurred. This design allows provides for a very short linkers allows us access to materials with small pore diameters. We propose to use a linker based on vinylferrocene that will be provided to immobilize on to porous support (carbonous and silica). The click reaction to be investigated is based on inverse electronic demand Diels-Alder (iEDDA), which is a catalyst free method and the rate of the reaction is controlled by the click moieties (tetrazine and olefin). Additionally, the ferrocene based linker provides an excellent probe for Mössbauer spectrometer, which is sensitive enough to differentiate between vinylferrocene and the clicked ferrocene. This ferrocene based linker can also be useful for other projects within the SFB to exploit Mössbauer where materials/complexes that do not contain iron, or where iron may be difficult to incorporate into the material/catalyst.